UPDATE NOTICE NO. 1

Introduction to RT-11

AD-5281B-TH1

March 1981

NEW AND CHANGED INFORMATION

This update contains changes and additions to the Introduction to RT-11
(AA-5281B-TC).

Additional copies of this update to the Introduction to RT-11 may be
ordered from the Software Distribution Center, Digital Equipment
Corporation, Maynard, Massachusetts 01754. Order Number:
AD-5281B-T1. The order number of the base manual is AA-5281B-TC.

Copyright © 1981 by Digital Equipment Corporation
Maynard, Massachusetts

INSTRUCTIONS

The enclosed pages are to be placed in the Introduction To RT-11 as replacements for, or
additions to, current pages. The changes made on replacement pages are indicated in the
outside margin by change bars () for additions and bullets (e) for deletions.

KEEP THIS NOTICE IN YOUR MANUAL TO MAINTAIN AN UP-TO-DATE RECORD OF CHANGED PAGES

Old Page

Title page/Copyright
5-9/5-10
5-19/5-20
9-5/9-6
14-3/14-4
14-5/14-6
14-11/14-12
15-7/15-8
A-3/A-4
Reader’'s Comments

New Page

Title page/Copyright
5-9/5-10
5-19/5-20

9-2.1
9-5/9-6
14-3/14-4
14-5/14-6
14-11/14-12
15-7/15-8
A-3/A-4
Reader’'s Comments

March 1981

This document is an introductory manual for the RT-11 operating
system. Its purpose is to acquaint new users with the RT-11
commands that perform common system operations. This manual
presents the background material necessary to understand the system
operations. It also contains a series of command examples and
demonstration exercises that complement the text.

Introduction to RT-11
Order No. AA-5281B-TC

SUPERSESSION/UPDATE INFORMATION: This manual supersedes Order No.
DEC-11-ORITA-A-D, DN1. This
manual includes Update Notice No.
1, (AD-5281B-T1).

OPERATING SYSTEM AND VERSION: RT-11 V4.0

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

First Printing, March 1980
Updated, March 1981

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment
Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may only be
used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is
not supplied by DIGITAL or its affiliated companies.

Copyright © 1980, 1981 by Digital Equipment Corporation
All Rights Reserved.

The postage-paid READER’S COMMENTS form on the last page of this document
requests the user’s critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS
DEC DECtape OMNIBUS
PDP DIBOL 0S/8
DECUS EduSystem PHA
UNIBUS FLIP CHIP RSTS
COMPUTER LABS FOCAL RSX
COMTEX INDAC TYPESET-8
DDT LAB-8 TYPESET-11
DECCOMM DECSYSTEM-20 TMS-11
ASSIST-11 RTS-8 ITPS-10
VAX VMS SBI

DECnet IAS PDT
DATATRIEVE TRAX

M12700

10/81-16

Creating and Editing Text Files

The K (Kill) command erases the entire line following the pointer
and positions the pointer at the beginning of the next line in the
text. Type:

* K ESO L. €0 s
AR ENDOWED BY THEIR CREATORs THAT AMONG
*

The pointer is now at the beginning of the next line in the text. As
you can see, this line also contains an error, the word ARE is
incorrectly spelled as AR. Use the J command to jump over two
characters, and insert the E. Then verify the line:

* 2 JESO TEESD Y ESO €SO
ARE ENDOWED BY THEIR CREATORs THAT AMONG
* 1

The arrow shows where the pointer is now positioned. This line
still contains an error — it is missing the words WITH CER- GET
TAIN INALIENABLE RIGHTS, which should follow the word
CREATOR. You can count the number of characters from the
pointer to the second R in CREATOR and then jump the pointer
by this number, or you can use the G (Get) command. The G
command searches, from the pointer, for the first occurrence of a
specified character string and leaves the pointer at the end of that
string. Use the G command to search for the string OR (in CREA-
TOR); then insert the missing words and list the lines that have
changed. Notice how you use the carriage return to break the line
into two parts (the symbol is used to show where you should
insert spaces):

*GORESOIE) WITHE CERTA INEGED
INALTIENABLEG) RIGHTSESO - AESO 2L €SO €SO

ARE ENDOWED BY THEIR CREATOR WITH CERTAIN
INALTENABLE RIGHTS: THAT AMONG

*

To list both lines, it was necessary to move the pointer back to the
beginning of the first line you changed; this was done by the -A
command. The 2L. command then listed both lines. Notice where
the pointer is; it was moved by the -A command and was not
repositioned by the L. command.

You must be careful when you use the Get command, because the
character string you specify must be unique if you want the
pointer to move to the correct spot. For example, if the characters
OR had occurred anywhere after the pointer and before the word
CREATOR, the pointer would have stopped there instead, and
you would have inserted text in the wrong place.

The final errors in this text occur in the last line. The words THE
PURSUIT OF are missing, and the word HAPLENESS is a mis-
spelling. Use the Get command to move the pointer to the word

5-9

Creating and Editing Text Files

CTRL/L

March 1981

AND and insert the missing text. Move the pointer again with the
Get command to the PLE of HAPLENESS; erase the LE, and
insert PI. Then verify the line:

*GANDESO I6GP) THEGP PURSUI TER OF €SO ESO
*GPLEEO-ZDEOIPIEDY ESOED

THESE ARE LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS.
*

Large text files of 50 lines or more should be delimited into pages.
To do this, insert a form feed into the text at the place where you
want the page to end. A form feed is typed as a CTRL/L (hold the
CTRL key down and type the L key), which the editor recognizes
as a page break.

Since this text file is only five lines long, there is really no need to
delimit it as a page. However, for the sake of practice, insert a
form feed at the end of this file. Then move the pointer to the
beginning of the text buffer and list the entire text. Compare your
text with the following example. If errors remain in your file, fix
them by using the commands described so far.

*G,E01
CRLD) (CTRL/L echoes as eight line feeds.)

€SO B EsC) / L €SO €SO

WE HOLD THESE TRUTHS TO BE SELF-EVIDENT:

THAT ALL MEN ARE CREATED EQUAL . THAT THEY

ARE ENDOWED BY THEIR CREATOR WITH CERTAIN
INALTENMABLE RIGHTS: THAT AMONG

THESE ARE LIFE, LIBERTY AND THE PURSUIT OF HAPPINESS,

This text is correct in spelling and content, but the last two lines
should be justified to make them easier to read. The pointer is
currently at the beginning of the text. Use the G command to
search for the character string AMONG; then insert and delete
text to justify the lines. Finally, list the text again:

*GAMONGESO IGP THESEGP AREESOAESD L 0D ESD B ESO / L ESO) ESO)
WE HOLD THESE TRUTHS TO BE SELF-EWVIDENT:
THAT ALL MEN ARE CREATED EQUAL s THAT THEY
ARE ENDOWED BY THEIR CREATOR WITH CERTAIN
INALIENABLE RIGHTS: THAT AMONG THESE ARE
LIFE» LIBERTY AND THE PURSUIT OF HAPPINESS.

Creating and Editing Text Files

Following are two demonstration programs. One is written in the
FORTRAN IV programming language and one is written in the
MACRO-11 assembly language. Both programs are used in later
chapters of this manual, and both contain intentional misspell-
ings and errors.

Use the editor to create these programs. Type them exactly as
they are shown, including errors. Use tabs and spaces to format
each line as shown (remember that tab stops are positioned every
eight spaces across the terminal page). Make sure that the FOR-
TRAN program is formatted properly so that a source comparison
described in the next chapter will operate properly. Except for the
comment lines (those beginning with a C), begin all lines with a
tab. Use any of the editing commands described in this chapter.
Activate the display editor and immediate mode if you wish.

When you have finished, check each file carefully. The two files
should match those shown here exactly, including tabs and
spaces. Correct any errors that you find that are not intentional.
Obtain a listing of each file by using B €0/L &0 before closing
the file.

Create the FORTRAN file first. Call it GRAPH.FOR and use the
system volume for storage. Then create the MACRO program.
Call it SUM.MAC and again use the system volume for storage.

NOTE

Knowledge of the FORTRAN IV and MACRO-11
languages is not necessary to create these dem-
onstration programs.

The following program, GRAPH.FOR, is the FORTRAN demon-
stration program.

GRAFH.FOR VERSION 1

THIS PROGRAM FRODUCES A FLOT ON THE TERMINAL

OF AN EXTERNAL FUNCTIONs FUN(XsY)

THE LIMITS OF THE PLOT ARE DETERMINED BY THE DATA STATEMENTS
"STAB® IS FILLED WITH A TAELE OF WEIGHT FLAGS

*STRING® IS USED TO RUILD A LINE OF GRAFH FOR FRINTING

OO0 OoO S

SCAL (ZMIN» ZMAXyMAXZyK)=ZMINHFLOAT(K-1)X(ZMAX—-ZMIN) /FLOAT (MAXZ-1)
LOGICALX1 STRING(13:3)sSTAR(100)
DATA XMINyXMAX»MAXX/=5+5,45/
DATA YMINyYMAXyMAXY/-525+72/
DATA FMINsFMAX/0.091.0/
CALL SCOPY('~ 1 2 3 4 5 6 7 8 9 +'»STAR)
MAXFLEN(STAR)
0o 20 IX=1sMAXX
X=SCAL (XMINy XMAX s MAXX» IX)
CALL REFEAT(/ X’ sSTRINGs»MAXY)
IFCIX.EQ.1 OR., IX.EQ.MAXX) GOTO 20
DO 10 IY=2,MAXY-1
Y=SCAL (YMINs YMAX s MAXY 1Y)
ITFUN=2+INT(FLOAT (MAXF-3) % (FUNOX Y)Y -FHIN) / (FMAX-FMIN))
10 STRING(IY)=STAR(MINO(MAXF yMAXO (15 IFUNY))
30 CALL PUTSTRING(7»STRING»’ /)
CALL EXIT
END

FUNCTION FUN(XsY)
R=SQART(XKX2+YXX2)
FUN=XXYXRXEXF (-R)) X%2
RETURN

END

5-19

CREATING THE
DEMONSTRATION
PROGRAMS

March 1981

Creating and Editing Text Files

The following program, SUM.MAC, is the MACRO demonstra-
tion program.

TITLE SUM.MAC VERSION 1

+MCALL TTYOUT» JEXITy PRINT

N = 70, iND. OF DIGITS OF ‘E’ TU CALCULATE
i ‘E’ = THE SUM OF THE RECIFROCALS OF THE FACTORIALS
i 1700 + 1710 + 1/72%V + 1/3% + 1/4% + 1/3V + 44
EXF? +FRINT $#MESSAG sPRINT INTRODUCTORY TEXT
MOV #NSRS iNO. OF CHARS OF “E’ Y0 FRINT
FIRST: MOV #N+1,RO iNO., OF DIGITS OF ACCURACY
MOV $#ArR1 sADDRESS OF D1GIT VECTOR
SECOND: ASL @GR1 $00 MULTIFLY BY 10 (DECIMALD
MoV @R1»-(SF) $SAVE %2
ASL @R1 ika
ASL eR1 ixB
ADD (SFY+y (R1)+ yNOW %10, FOINT TO NEXT DIGIT
DEC RO AT END OF DIGITS?
ENE 2ND P BRANCH IF NOT
MoV ENsRO GO THRU ALL FLACES» DIVIDING
THIRD! MOV ~(R1)»R3 yBY THE FLACES INDEX
MoV $#-1+R2 i INIT QUOTIENT REGISTER
FOURTH? INC R2 s BUMF QUOTIENT
SUEB ROYR3 FSUBTRACT LOOF ISN'T BAD
RCC FOURTH SNUMERATOR IS ALWAYS < 104N
ADD ROsR3 i FIX REMAINDER
MoV R3rCR1 $SAVE REMAINDER AS BASIS
i FOR NEXY DIGIT
ADD R2-2(R1) }GREATEST INTEGER CARRIES
#+TO GIVE DIGIT
NEC RO 5AT END OF DIGIT VECTOR?
ENE THIRD s BRANCH IF NOT
MOV -(R1) RO $GET DIGIT TO OUTFUT
FIFTHY SUER ¥10.,5R0O JFIX THE 2.7 TO0 .7 SO
sTHAT IT IS ONLY 1 DIGIT
HCC FIFTH 3 (REALLY DRIVIDE EBY 10)
ADD $#10+/0yR0O FMAKE DIGIT ASC Il
+TTYON yOUTFUT THE DIGIT
CLR eR1 $CLEAR NEXT DIGIT LOCATION
neEc RS #MORE DIGITS TO FRINT?
ENE FIRST s BRANCH IF YES
JEXIT sWE ARE DONE
EXF 3 +REFT N+l
<WORI 1 JINIT VECTOR TO ALL ONES
JENDR
MESSAGS .ASCII /THE VALUE OF E ISi/ «15:<12x /2./ +200x
+EVEN
+ENDEXF

March 1981 5-20

Running a FORTRAN IV Program

To link the example FORTRAN program, you must include
FORLIB.OBJ in SYSLIB. For instructions on how to include
FORLIB in SYSLIB, refer to Section 3.4 in the RT-11 FORTRAN
IV Installation Guide.

9-2.1 March 1981

Running a FORTRAN 1V Program

point to look at the listing produced by the compiler, because
more information is shown there. Print the listing on either the
line printer or terminal, using one of the following commands:

Long Command Format

(Line printer) (Terminal)
+«PRINT @RED « TYPE
Files? GRAPH.LST @D Files? GRAPH.LSTQRE

Short Command Format
(Line printer) (Terminal)
+ PRINT GRAPH,LST + TYPE GRAPH.LST

Your listing should look like the following example.

NOTE

You do not need to understand the FORTRAN IV
language or the way this program works to suc-
cessfully complete the exercises in this chapter.

FORTRAN IV Vo2,1-10 Thu L1-flec-80 01:18:50 FAGE 001
C GRAFH.FOR (VERSION FROVIDED)
C THIS FROGRAM FRODUCES A FLOT ON YHE TERMINAL
€ OF AN EXTERNAL FUNCTIONs FUN(X»Y)
C THE LIMITS OF THE FLOT ARE DETERMINED BY I1HE DATA STATEMENTS
C "STAB® IS FILLED WITH A TABLE OF HEIGHT FLAGS
C "STRING® IS USEL TO RUILD A LINE OF GRAFH FUR FRINTING
0001 SCAL (ZMINy ZMAX s MAXZ s K)=ZMIN+FLOAT (R=1) X (2ZMAX~ZMIN)/FLOAT (MAXZ-1)
0002 LOGICALX1 STRING(13»3)»STAE(100)
0003 DATA XMINyXMAXIMAXX/-Ss5,45/
0004 DATA YMIN, YMAXyMAXY/-5y5,y72/
0005 DATA FMIN,FMAX/0.0v1,0/
0006 CALL SCOFY(‘'- 1 2 3 45 6 7 8 9 +'ySTAR)
0007 MAXF=LEN(STAE,
0008 00 20 IX=1»MAXX
0009 X=8CAL (XMIN,XMAXsMAXX? 1X)
0010 CALL REFEAT (X’ »STRINGyMAXY)
0011 IF(IX,EQ.1 OR. IX.EQ.MAXX)> GOTOD 2¢
0013 00 10 IY=2,MAXY-1
0014 Y=GCALCYMINs YHAX s MAXY s IY)
0015 TFUN=24+INT(FLOAT(MAXF~3) ACFUNCXs 7D =FMIN) Z (FMAX-FMIN))
0016 10 STRING(CIY)=STAR(MING(MAXF yHAXC(1sIFUNY)
0017 30 CALL PUTSTR(7y»STRINGy‘)
0018 CALL EXIT
0019 END
FORTRAN IV Diagriostics for Frodgram Unit .HMAIN,

In line 0003y Errort Modes of variazble "XHIN' and data 1tem differ
In line 0004y Error: Modes of variable "YMIN' and data 1tem dufrter

In linme 0008s Error: Reference to undefired statement label

In line 0012y Error? Reference to undefined statement label

In line 0016y Errort Wrong number of subscrirts for arraw *STRING®
FORTRAN IV Storage Mar for Frodgram Unit MAIN,

Local Variablesy FSECT $DATAy Size = 000334 (11C¢. words:

Name Ture Offset Name Tyre Offset Name Ture Offset
FMAxX Rx4 000230 FMIN Rx4 000224 1Fun T4z

IX Ix2 000274 I Ix2 QUO300 K Ix2

MAXF I%2 000260 MAXX 1%2 000272 MAXY 1x2

MAXZ %2 000254 MAXO Ix2 000316 MINO %2 000314

9-5 March 1981

Running a FORTRAN IV Program

March 1981

X Rx 4 000262 XHAX R&4 000260 xrIn Fx4 000214
Y Rx4 000302 YRAX Rx4 000306 TN R44 VQ02%EY
ZHAaX R¥4 000230 ZHIN R%4 000a4

Local and COMMON Arraus:

Name Ture Section Offset =~-=~-- Size-==-== iimensions
STAR Lxi $DATA 000047 000144 (50+, (100
STRING LXx1 Vec $DATA 000000 000047 ¢ 20.) (13,3

Subroutiness Functionsy Statement and Frocessor-Defined Functions:

Name Ture Name Tyre Name Tyre Name Ture Name Ture
EXIT RXx4 FLOAT RX4 FUN Rx4 INT Ix2 LEN Ix2
FUTSTR RX%4 REFEAT Rx4 SCAL RX4 SCOFY R%4

FORTRAN IV voz2.,1-10 Thu 11-Tec-80 01118155 PAGE 001
0001 FUNCTION FUN(X»Y)

0002 R=SQRT(XXkK2+YXX2)

0003 FUN=XXYXRXEXF (-R))%%2

XKKkX F

0004 RETURN

0005 END

FORTRAN IV Diagnostics for Frogram Unit FUN

Irn line 0003y Error: (See source listimgl

FORTRAN IV Storage Mar for Frodram Unit FUN

Local Variabless FSECT $DATAy Size = 000020 (8. words)

Name Ture Offset Name Tyre Uffset Name Ture QOifzet
FUN R%4 000004 Eav R &4 600010 X K44 @ 000000
Y K¥4 @ 000002

Subroutinesy Functionsy Statement and Frocessor-fefined Functions:

Name Ture Name Ture Name Ture Name Ture Name Ture
SQRT R¥4

The first part of the listing shows the main program unit and
consists of the language statements up to, but not including, the
function. This is followed by a diagnostics list, then by a storage
map. Next the language statements comprising the function pro-
gram unit are listed, again followed by a diagnostics list and a
storage map.

Before considering the individual sections of the program listing,
first examine the program logic to determine what this program
should do. The first few lines of this program are user comment
lines that briefly describe the program. Essentially, this program
produces on the terminal a graph of a “three-dimensional” func-
tion, FUN(X, Y). The graph is plotted using 45 lines down and 72
characters across the terminal page. The limits of the X and Y
axes are +5 and -5. The third dimension, height, is a real number
within the range 0 to 1 and is represented in the listing as a
number within a scale of 1 to 9. These dimensions are illustrated
in Figure 9-3.

The SCAL function determines the value of the next coordinate
on the graph. The statements within the DO loops calculate the
coordinates using the SCAL function and determine the height
value. This is done for an entire line of coordinates across the
terminal page. The entire line is then printed on the terminal,
using the CALL PUTSTR statement; the number 7 in this state-
ment is the FORTRAN method of naming the terminal as the
output device. This procedure is repeated until all 45 lines of the
graph have been printed.

9-6

rately with artificial data. After you test all parts individually,
you can test routine and module linkage — system testing — to
see that all related code fits together properly.

Check the program with test data. A standard method for check-
ing out modules is to write a test program that calls the program
with possible options. The test should cause the program to exe-
cute all steps in all algorithms. Check programs first with repre-
sentative data, then with improper data (data that is not in the
correct range or size). You should also do volume testing to see
that the program works successfully with a representative amount
of data.

Each programming language has special debugging aids for exam-
ining immediate states. For example, BASIC has a STOP state-
ment that you can insert at strategic points in the program. When
the program arrives at a STOP statement, it pauses so that you
can use BASIC’s immediate mode to examine variables, values,
and so on. Use an immediate mode GO TO statement pointing to
the appropriate line number to continue execution.

FORTRAN 1V has a special DEBUG statement indicator, a D in
the first column of a statement line. Operations in statements
marked with a D can perform useful debugging functions, such as
printing intermediate results. You can treat such statements as
source text (and thus execute them) or as comments (and thus
ignore them), depending on whether you use a special compiler
command option. In addition, FORTRAN IV has a traceback
feature that locates the actual program unit and line number of a
run-time error. If the program unit is a subroutine or function
subprogram, the error handler traces back to the calling program
unit and displays the name of that program unit and the line
number where the call occurred. This process continues until the
calling sequence has been traced back to a specific line number in
the main program unit. Finally, FORTRAN IV has an optional
interactive debugger called FDT (FORTRAN DEBUGGING
TECHNIQUE) that can be linked with a user program.

For MACRO-11 users, RT-11 provides a special on-line debug-
ging tool called ODT (On-line Debugging Technique). This is
provided as part of the RT-11 operating system and is an object
program on your system volume. It is used exclusively for debug-
ging assembled MACRO-11 programs.

The use of ODT is described next for MACRO-11 users and for
those FORTRAN IV users who will be combining MACRO and
FORTRAN program code. Other users can continue to Chapter
15, or go back and perform one of the other language demonstra-
tions. Refer to the reading path outlined in the Preface.

14-3

Debugging a User Program

Debugging a User Program

USING THE
ON-LINE
DEBUGGING
TECHNIQUE

March 1981

ODT is an interactive debugging tool that allows you to monitor
program execution from the console terminal. ODT is provided as
the object module ODT.OBJ on your system volume. To use it,
you link ODT.OBJ with the assembled MACRO program that
needs debugging. You then start execution of the resulting load
module, not at the transfer address of your program, but at the
entry point of the ODT module (shown on the linker load map as
the global symbol O.0DT). Once ODT is started, you can use its
special debugging commands to control the execution of your as-
sembled machine language program from the console terminal, to
examine memory locations, to change their contents, and to stop
and continue program execution.

The MACRO demonstration program in Chapter 11 still contains
one error, which you can locate and correct using ODT. Several
ODT debugging commands are demonstrated in the process.

Throughout the examples in this chapter you need to refer to the
program assembly listing that you produced in Chapter 11 (SUM)
and stored on the storage volume. Print it now on either the
terminal or line printer:

Long Command Format

(Line printer) ' (Terminal)
. PRINT®ED . TYPEGED
Files? YOL:SUM.LSTED Files? YOL:SUM,LSTEED

Short Command Format

(Line printer) (Terminal)
LPRINT VOL:SUM,LSTEED , TYPE YOL:SUM,LST@ED
SUM.MAC VERSION 1 MACRC V04.00 12-DEC-80 00:02:09 FAGE 1
1 «TITLE SUM.MAC VERSION 1
2
3 JHMCALL L TTYOUTy JEXITs JFRINT
3
S
b
7 000106 N 70. FNO. OF DIGITS OF “E’ TO CALCULATE
8
9 i ‘= THE SUM OF THE RECIFROCALS OF THE FACTORIALS
10 i 1/0' 4 1710 1720 ¢ 1730 4 1740 4+ 1/50 ¢
11
12 000000 EXFL LJPRINT #MESSAG FPRINT INTRODUCTORY TEXT
13 000004 012705 000106 MOV ENIRG #NO. OF CHARS OF ‘E’ TO FRINT
14 000012 012700 000107 FIRST: MOV ANELPRO #NO, OF DIGITS OF ACCURACY
15 000016 012701 0001247 Hoy AR FANDRESS OF DIGLT VECTOR
146 000022 Q06311 SECOND! ASIL @R1 f00 MUL TIFLY BY 10 (DECIMAL
17 000024 011146 Moy @Ry (BFDY FSAVE X2
18 000026 Q06311 ASL. @Rl kA
19 000030 Q046311 ASL Br1 L 351
20 000032 062621 Al SF) Fr CRIDE SNOW %10y FOINT (G NEXT Olsl
21 000034 005300 nEC KO FAT ENIY OF DlGLIS?
22 000036 001371 HENE SECOND s BRKANUH [F NOT
23 Q00040 012700 000106 MOV BN RO SG0O THRU ALL FLACESs LAVETIING
24 000044 014103 THIRDG MOV (K1) sR3 FEY THE FLACEY INLEX
25 000046 012702 172777 nov o LeRD FINLT QUOTIEENT REGISTER
26 0000%2 005202 FOURTH! INC R # BUMF QUOTLENT
27 000054 160003 HBUE KOy R3 FSUBTRACT LOOF I8N T BAD
28 000056 103375 BCC FOURTH FINUMERATUR I8 ALWAYS LORN
29 000060 060003 ADD ROYR3 FRFIX REMAINDER
30 000062 010311 HOV R3r@R1 $SAVE REMAINDER A% BAS [
31 FFOR NEXT DIGLT
J2 000064 0640261 177776 ALD Ry -2(R1) FGREATEST INTEGER CARKIEE
33 ST00 GLVE DIGTT
34 000070 005300 LEC KO FAT END OF DIGIY VECTORY
35 000072 001364 ENE THIRD FHRRANCH TF NOT
36 000074 014100 MOV (R1Y RO FGET DIGIT 10 OuTFUT

14-4

37000076 L62700 000012 FIFTH: SUR *#10.9RO FEIX THE 2.7 TO
."B . FTHAT IT IS 0O GLT
39 000102 103375 Bee FIFTH #(REALLY DIVT)
40 000104 062700 000070 AL 10+ 0rRO SMAKE D16
‘3’1 000110 STTYOUT FOUTFUT T
4f_' 000114 CLE PR CLEAR T DIGIT LOCATION
3 TO PRINTY
FIRST YEG
FWE ARE TONE
47 000124 000107 Al +REFT Nt
48 <WORD 1 FINLTU VECTOR TO ALL ONES
49 +ENDR
50
Bl 000342 124 110 105 MES: CABCTL /THE VOLUE OF E 181/ <152<12: /2.7 <2003
000345 040 126 101
000350 114 1045
000353 040 117 106
OO b 040 105 040
000361 111 123 072
000364 015 012 062
SUM.MAC VERSION 1 MACRO V04,00 L2-DEC-80 00202109 FAGE 1-1
000367 056 200
5o CEVEN
$3
L 000000 +END EZXF
SUMMAC VERSION L MACRD V04,00 12-TEC-80 00102109 PAGE 1-:
HYMEOL TABLL.
A 000124k F N 00010E THIKI 000044R
HEXF 000000K FIRGT 000012R BECONIN 0000225
« ABS. 000000 000
000!

001
ERRORS DE 0

VIRTUAL MEMORY USED! $8448 WORDS ¢ 33 PAGES)
DYNAMLC MEMORY AVALLABLE FOR 35 FAGES
DK SUM» DR SUM/ZC=DK T SUM

SUM.MAC VERSION 1 MACRO V04,00 12-DEC-BO 00102109 FAGE
CROSS REFERENCE TARLE (CREF V04,00)

N 1-14 1-23 1-47

SECONT

THIRD

BUMSMAC VERSION 1 MACRO V04,00 12-DEC-BO 00302109 FAGE M-1

CROBS REFERENCE TABRLE (CREF V04,00)

JEXIT 1-3% 1-4%
«FPRINT 2
LTTYOU 1-41

Now link the MACRO program object module (SUM.OBJ) stored
on the storage volume (VOL:) with ODT.OBJ by using the /DE-
BUG option, and print a load map directly on the terminal or line
printer, choosing one of the following commands:

Long Command Format

(Line printer) (Terminal)

+LINK/MAP/DEBUG +LINK/MAP:TT:/DEBUGRED
Files? YOL:SUMRED Files? YOL:5UM

14-5

Debugging a User Program

LINK/DEBUG

March 1981

Short Command Format

(Line printer) (Terminal)
LLINK/MAP/DEBUG VOL : SUM®ED LLINK/MAP:TT:/DEBUG YOL: SUMEED
RT-11 LINK VGG.01 Load Mar Fri 11-Jan-80 13:11:26
SUM 85AY Title: 00T Idernt: V04,00
Section Addr Size Global Value Global Value Globkal Value

« ABS. 000000 001000 (RWsI+GBL +ABS +OUR)

Q01000 000372 (RWsI+LCL REL.CON)

$0DT% 001372 006152 (RW,»I+LCL+REL +CON)

0.0DT 001624

Transfer address = 001624, Hish limit = Q07542 = 1969, words

Look at the load map, and note that ODT starts at address 1372.
The two modules together, ODT and SUM, reside in memory up
to location 7542, the high limit. Look at the symbol table listing
for the MACRO program. This shows that the program is 372
(octal) bytes long and starts at location 1000.

To load and start execution of the load module, use the monitor
RUN command. The RUN command brings the entire load mod-
ule, called SUM.SAYV, into the absolute (physical) memory loca-
tions shown in the load map and begins execution automatically
at the starting, or transfer, address of the first module in memory,
which is ODT. Type:

Long and Short Command Format

+RUN SUMEED
opT vod, o0
*

ODT prints an identifying message on the terminal and an aster-
isk indicating that you are in ODT command mode and can enter
an ODT command. You are now using ODT to control the execu-
tion of your program.! ODT commands let you execute the entire
program or just portions of it, examine individual locations, ex-
amine the contents of the PDP-11 general registers, and change
the contents of any locations in your program you wish. If you
make a mistake while you are typing any commands, type the
DEL key; ODT responds with a ? and an asterisk, allowing you to
enter another command.

' Be sure to read Chapter 16 of the RT-11 System User’s Guide before you use
ODT with any of your own programs. You must observe certain precautions
when you write your program and when you load it with ODT. For example,
you should make sure that ODT is not loaded into memory locations used by
your program. There are steps you can take to prevent this from occurring.

14-6

(.TTYOUT), but that it occurs somewhere before location 110. So
the next step in debugging this program is to set a breakpoint at
some earlier point in the program logic and to rerun the program.
You must restart ODT to do this. Return to monitor mode by
typing CTRL/C. The remainder of the program message prints on
the terminal; then the monitor period appears, indicating that
you are in monitor mode:

*CTRLIO)
#UALUE OF E IS:

s
a3

4+

Restart ODT and reset relocation register 0:

+RUN SUMGED
oDT vod.,00

Set a breakpoint at location 76 (line 37 in the assembly listing),
and start program execution at its beginning:

*¥0,76508
*¥O 405G
TBOIO 000076

Again, examine register 0 to verify its contents:
*$0 /0000336

By following the program logic in the assembly listing, you know
that the value in register 0 should at this point be 33(octal) (2.7,
previously multiplied by 10, = 27[decimal] = 33[octal]). So the
value in register 0 is correct. From this, you can deduce that the
error must occur somewhere between locations 76 and 110. The
proper step now is to check the assembly listing, where you find
the error at line 40. The decimal point that should follow the 10,
identifying it as a decimal 10, is missing. Therefore the program
treats the 10 as an octal 10, or 8(decimal), making each digit in
the result off by an additive factor of 2. The data in location 106,
then, should be 72, not 70. Since this data has not yet been used,
you can change it now with ODT and continue program execu-
tion; if it had been used, you would need to restart ODT and then
change the data. To change the contents of a location, simply
open the location, type in the new contents, and close the loca-
tion, using a carriage return.

*¥0,106/7000070 72ED

14-11

Debugging a User Program

Debugging a User Program

Now eliminate all breakpoints.
B

Continue program execution; the correct results should print:
*3p

THE VALUE OF E IS:
2.,7182818284590452353602B74713526624977572470936999595749669676277240766

SUMMARY: To Start ODT
COMMANDS FOR LINK/DEBUG
DEBUGGING Link the assembled program (the program to be debugged)
PROGRAMS with the ODT object module.
To Use ODT!

Close the currently open location and open the next sequential
location for examination and possible modification.

RET
Close the currently open location.

addr/
Open the location indicated (addr) for examination and possi-
ble modification.

addr;G
Begin program execution at the indicated address (addr).

’
Continue program execution from a preViOUS breaprint.

addr;nB
Set one of the eight available breakpoints (n) at the indicated
address (addr).

:nB

Cancel the indicated breakpoint (n).
;B

Cancel all breakpoints.
addr;nR

Set one of the eight available relocation registers (n) to the
relocation constant value indicated by addr.

' Only a very few of the available debugging commands have been demonstrated
in this chapter. Consult Chapter 21 of the RT-11 System User’s Guide for all
ODT commands.

March 1981 14-12

Using the Foreground/Background Monitor

Long Command Format

+LINK/FOREGROUND
Files? DEMOFG @D

Short Command Format

+LINK/FOREGROUND DEMOFG @ED

Now you are ready to operate the two-job environment. Many Executing The
times, you have to consider the devices that are used for output in Foreground and
a foreground/background environment. For example, if your pro- Background Jobs

gram assumes that the output device is a line printer, and you do
not have a line printer or you want to output to another device,
use the ASSIGN command. Type this command in the following
way, substituting the two-character code from Table 4-2 for the
storage volume in place of xx.

Long Command Format

+ASSIGN
Physical dewvice name? xx: @
lLodical device wnames: LP: @

Short Command Format

+ASSIGN xx: LP: @I

You do not have to consider the above information for the demon-
stration programs that are provided, since the foreground job
communicates with the background job, and both jobs send their
output to the terminal.

When you use the FB monitor, you must always load into memory
the peripheral device handlers needed by the foreground job. You LOAD
use the monitor LOAD command to make a device handler per-
manently resident in memory. For example, if your foreground
job requires the use of the line printer, you must load the LP
device handler. You must specify the jobtype with the command.
For a foreground job, the jobtype is F; for a background job, the
jobtype is B. If you have assigned the code LP: to another device,
the system automatically loads the assigned handler and you
need not enter a LOAD command. If you are using the line
printer, type:

Long Command Format

+L.OAD @D
Device? LP:=F @

15-7

Using the Foreground/Background Monitor

FRUN

March 1981

Short Command Format

+LO0AD LP:=F GED

The command to load and start execution of the foreground job is
FRUN, which is similar to the RUN command except that the
system automatically loads and starts the execution of the fore-
ground .REL program. You must use the /BUFFER:n option with
the FRUN command to execute a FORTRAN foreground job. The
argument n represents, in octal, the number of words of memory
to allocate. Use this command to start the execution of DE-
MOFG.REL.

Long and Short Command Format

+FRUN/BUFFER:vn DEMOFG @D

Fo

FOREGROUND DEMONSTRATION PROGRAM

SENDS A MESSAGE TO THE BACKGROUND PROGRAM “DEMOBG"
EVERY 2 SECONDS,» TELLING IT TO RING THE BELL.

B

The foreground program DEMOFG is now running and queuing
the message for the background program every two seconds. You
now execute the background program DEMOBG to allow it to
receive the messages that were queued and to ring the bell.

+RUN DEMOBG @D

RT-11 DEMONSTRATION PROGRAM

IF INCORRECTLY EDITED., THIS IS THE LAST LINE.
WELL DONE.

The bell rings several times in rapid succession as the monitor
dequeues the messages, and then every two seconds as the fore-
ground job sends its message to the background job.

You can run other jobs in the background. You can use the back-
ground of an FB environment in the same way as the SJ environ-
ment. First, terminate the background job DEMOBG, using the
double CTRL/C command.

€O

+

Execute a DIRECTORY command in the background to get a
listing of all the .OBJ files on the system volume by typing

+DIRECTORY *,0BJ @D

15-8

Manual Bootstrapping Operations

To activate other bootstraps, set the numbers into the pushbut-
tons, using the following method (if you make a mistake, push the
button labeled CLR, then reenter the number):

1. Push 1000 (read the number from left to right).
2. Push LAD.

3. Push the appropriate buttons for the first number in the
Contents column (read the number from left to right).

4., Push DEP; push CLR.

5. Push the appropriate buttons for the next number in
the Contents column (read the number from left to
right).

6. Repeat steps 4 and 5 until all numbers in the column
have been used.

7. Push 1000.
8. Push LAD.

9. Push the button labeled CNTRL, and, while holding it
down, push the button labeled START.

10. Continue to step 11 in Chapter 2.

If your computer has a switch register console on the front panel USING A SWITCH

similar to those shown in Figure A-2, you can use the switches to REGISTER
manually give the computer the bootstrapping information it CONSOLE TO
needs to start the system. BOOTSTRAP

Figure A-2 Switch Register Consoles

Several switches on the console are spring-loaded. This means
that the switch moves in only one direction and returns to its
initial position after you use it. You must set the remaining
switches either up or down as instructed.

Manual Bootstrapping Operations

March 1981

The bootstrap for your RT-11 computer system consists of a series
of six-digit numbers that you must load into the computer using
the switch register console. First, obtain the bootstrap of your
system device from the RT-11 Installation and System Genera-
tion Guide, and copy the numbers into the space provided below.
If your system has a hardware bootstrap,! the bootstrap consists
of only two numbers, which you should copy into the left-hand
space; otherwise, the bootstrap consists of two columns of num-
bers labeled Location and Contents, which you should copy into
the right-hand space:

Hardware Bootstrap Other Bootstraps

Load Address =
Start Address =

Next, convert the numbers in the column to binary numbers,
using the conversion process shown in Table A-1.

Table A-1: Binary Conversion

Octal Binary

= 000
= 001
= 010
= 011
= 100
= 101
= 110
= 111

GO U A W= O
I

For example, the number 173100 is converted to 001 111 011 001
000 000. You set this 18-digit binary number into the switch regis-
ter by placing each individual switch in an up position for a 1 or a
down position for a 0. The number 173100 is set into the switch
register as follows:

N O I I R R 2 R AR A R

The number 012700 is converted to 000 001 010 111 000 000 and
is set into the switch register as follows:

N R R R 22

' A hardware bootstrap is bootstrapping information that is already in computer
memory but that you must activate by entering a load address and a start
address, each a six-digit number.

Introduction to RT-11
AD-5281B-T1

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the
company’s discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most rearly represent.

[Assembly language programmer
[Higher-level language programmer
[J Occasional programmer (experienced)
[] User with little programming experience
(] Student programmer
[Other (please specify)
Name Date
Organization
Street
City State Zip Code

or Country

— — Do Not Tear - Fold Here and Tape¢ — — — — — — — —

— - Do Not Tear - Fold Here

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

CSD SOFTWARE PUBLICATIONS ML 5-56/E45
DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

— — - —— — om— — —

No Postage

Necessary
if Mailed in the
United States
I
N
I
I
I
I
I
N
I
I

Cut Along Dotted Line

